
ABSTRACT: This work demonstrates the application of partial
least squares (PLS) analysis as a discriminant as well as a quan-
titative tool in the analysis of edible fats and oils by Fourier
transform near-infrared (FT-NIR) spectroscopy. Edible fats and
oils provided by a processor were used to calibrate a FT-NIR
spectrometer to discriminate between four oil formulations and
to determine iodine value (IV). Samples were premelted and an-
alyzed in glass vials maintained at 75°C to ensure that the sam-
ples remained liquid. PLS calibrations for the prediction of IV
were derived for each oil type by using a subset of the samples
provided as the PLS training set. For each oil formulation (type),
discrimination criteria were established based on the IV range,
spectral residual, and PLS factor scores output from the PLS cal-
ibration model. It was found that all four oil types could be
clearly differentiated from each other, and all the validation
samples, including a set of blind validation samples provided
by the processor, were correctly classified. The PLS-predicted
IV for the validation samples were in good agreement with the
gas chromatography IV values provided by the processor. Com-
parable predictive accuracy was obtained from a calibration de-
rived by combining samples of all four oil types in the training
set as well as a global IV calibration supplied by the instrument
manufacturer. The results of this study demonstrate that by com-
bining the rapid and convenient analytical capabilities of FT-
NIR spectroscopy with the discriminant and predictive power
of PLS, one can both identify oil type as well as predict IV with
a high degree of confidence. These combined capabilities pro-
vide processors with better control over their process. 

Paper no. J9230 in JAOCS 77, 29–36 (January 2000)

KEY WORDS: Discriminant analysis, fats and oils, Fourier
transform near-infrared spectroscopy, iodine value, partial least
squares, quality control.

The application of near-infrared (NIR) spectroscopy in edible
oil analysis has predominantly involved its use for the rapid
quantitative determination of the oil content in oilseeds, with
relatively little work being carried out on the analysis of oils

per se. Most work on NIR oil analysis development has fo-
cused on classifying and/or discriminating between oil types
as well as detecting adulteration, particularly of olive oil.
Bewig et al. (1) used a filter-based NIR instrument to differ-
entiate between four types of oils (cottonseed, canola, soy-
bean, and peanut) using discriminant analysis based on Ma-
halanobis distance principles. Sato (2) used principal compo-
nent analysis (PCA) to classify vegetable oils using
second-derivative NIR spectra, with PCA providing the ben-
efit of using all the spectral data collected rather than only the
data at selected wavelengths. Wesley et al. (3,4) worked on
olive oil adulteration and demonstrated that it is possible to
effectively use NIR spectroscopy in conjunction with PCA to
predict both the purity of olive oil and the type of adulterant
as well as to quantitate the adulterant using partial least
squares (PLS) regression. These studies indicate that discrim-
inant analysis, PCA, and PLS are potentially powerful tools
for qualitatively characterizing oils as well as detecting adul-
teration and estimating the levels of adulterants. 

The McGill IR Group has focused on the development of
Fourier transform infrared (FTIR) spectroscopic methods for
the rapid quantitative analysis of edible oils based on mea-
surements in the mid-IR region of the spectrum (5–9). Re-
cently, two FT-NIR oil analysis methods have been devel-
oped, one for the determination of peroxide value (PV) and
the other for the simultaneous determination of cis and trans
content, iodine value (IV), and saponification number of edi-
ble oils (10,11). This work has elicited positive feedback from
industry sources who cite the ease of sample handling and
amenability to at-line and on-line implementation as impor-
tant attributes of FT-NIR oil analysis methods. For NIR oil
analysis, disposable glass vials are simply filled with neat
sample and discarded after measurement. Thus, NIR analysis
is more suitable for industrial applications than mid-IR analy-
sis, which employs transmission IR cells with narrow path
lengths (typically 0.025 mm) and salt windows. NIR analysis
also can be performed remotely with the use of low-cost NIR-
transmitting fiber optics. Conventional dispersive NIR instru-
ments can be unreliable in terms of maintaining calibration
stability, but this problem has been largely overcome with a
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new generation of FT-NIR instruments that have superior
wavelength reproducibility and stability, thereby minimizing
calibration drift and reducing the need to recalibrate. 

In recent years, several groups have used NIR spec-
troscopy to characterize and classify different types of fats
and oils. This work has largely been based on the application
of qualitative analysis techniques such as discriminant analy-
sis based on measurements at selected wavelengths and PCA.
However, quantitative analysis techniques such as PLS can
also serve as a basis for classification through the setting of
discrimination criteria based on the output obtained from the
calibration models. There is substantial interest in the edible
oils sector in instrumental methods for both the rapid identifi-
cation of the type of oil and the quantitation of specific oil pa-
rameters such as IV and trans content as well as discriminat-
ing between oils. This work reports the protocol and results
of an investigation of the capabilities of FT-NIR spectroscopy
as a practical at-line process control tool for discriminating
between various formulated oil products as well as determin-
ing their IV. 

MATERIALS AND METHODS

Oil samples. For this work, four sets of fats and oils (A–D)
were sent to the McGill IR Group by an oil processor. These
samples had all been preanalyzed for IV by gas chromatogra-
phy (GC), and the GC IV data were provided with the
samples. The IV of the samples ranged from 133.3–134.8 for

oil A, 91.3–96.3 for oil B, 117.1–118.8 for oil C, and
113.7–117.0 for oil D. In addition, 35 unknowns also were
provided as a blind validation set to be used in evaluating the
accuracy of product classification and IV determination by
FT-NIR spectroscopy. The FT-NIR prediction results ob-
tained for these samples were subsequently sent to the proces-
sor, who then made the classification and GC IV data for these
samples available for statistical analysis. 

Instrumentation and sample handling. The instrument
used in this study was a Bomem FT-NIR analyzer (Bomem
Inc., Québec, Canada) equipped with a deuterated triglycine
sulfate (DTGS) detector capable of scanning the spectral
range of 12,000–2,000 cm−1. The spectrometer was con-
trolled by an IBM-compatible 486 DX 66 MHz PC running
under Windows-based Bomem-Grams/386 software (Galac-
tic Industries Co., Salem, NH) and AIRS, a specific quality
assurance program produced by DHC Analysis (Cleveland,
OH). The sample handling accessory used in this study was a
temperature-controllable multivial-holding block capable of
accepting 8-mm (o.d.) transparent glass vials (Kimble Glass
Inc., Vineland, NJ) with a volume of ~1 mL. Figure 1 illus-
trates the sample handling accessory installed in the spec-
trometer. The temperature of the sample handling accessory
was held at 75 ± 0.2°C. For sample analysis, vials were filled
with 0.5–0.7 mL of oil or premelted fat and scanned over the
range of 12,000–4,500 cm−1.

All sample and background spectra were recorded by co-
adding 128 scans at a resolution of 16 cm−1. Air background
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FIG. 1. The Bomem (Québec, Canada) MB series Fourier transform near-infrared (FT-NIR) spectrometer with temperature-controlled multivial-
holding block.



spectra were collected every 30 min with the vial holder in
the IR beam, and sample spectra were ratioed against the most
recently collected air background. The ratioed spectra were
subsequently normalized to account for inherent variations in
the vial pathlength by using a normalization routine in the
AIRS software.

Standards, software, and calibration. From each oil prod-
uct category provided, 20 samples were used as calibration
standards and 5 samples were employed as validation sam-
ples. The calibration standards were scanned twice and the
glass vial containing the sample was rotated 90° in the vial
holder between the scans. The validation standards were run
in duplicate. The spectra of the calibration standards together
with the GC IV data obtained from the processor were com-
bined in the PLSPlus chemometrics program (Galactic Indus-
tries Co.) to develop PLS-NIR IV calibrations. The predicted
residual error sum of squares (PRESS) test and the root mean
square deviation (RMSD) associated with the cross valida-
tion of the calibrations tested were used to select optimal cal-
ibrations. The performance of the calibrations was evaluated
by linear regression of the cross-validation predictions and
the predictions for the validation samples against the GC data
provided by the oil processor, with uncertainty and repro-
ducibility assessed using mean differences (MD) and stan-
dard deviations of the differences (SDD) according to the
method of Youden and Steiner (12). In addition to the PLS
calibrations developed for IV using the samples provided, a
global IV calibration provided by Bomem was also assessed.
This calibration was developed using a broad selection of ed-
ible oils and fats that were collected from over 15 facilities
worldwide (13). These oils and fats varied in type and degree
of hydrogenation. Oil classification was carried out using
AIRS, which provides a means to discriminate between sam-
ple types or categories based on (i) the PLS-predicted value
of a parameter being measured; (ii) the spectral residual, rep-
resenting the spectral data not fit by the PLS calibration
model; or (iii) the PLS factor scores associated with the spec-
trum, or any combination of the three, as explained below.

Concepts and principles of the FT-NIR PLS method. PLS
is a powerful multivariate analysis technique that has largely
been pioneered for NIR applications and has played a major
role in the recent resurgence of quantitative mid-IR spec-
troscopy. PLS develops a calibration model by compressing
the spectral data for a set of calibration standards into a series
of orthonormal basis vectors, known as loading spectra or fac-
tors. The basis vectors selected to model the spectra of the
calibration standards emphasize spectral variations due to dif-
ferences in concentration and do not model variations due to
random noise, hence the name PLS. A PLS calibration can,
in principle, be based on the whole spectrum, although in
practice, the analysis tends to be restricted to regions of the
spectrum that exhibit the strongest variations with changes in
the concentrations of the components of interest. PLS decom-
poses the spectrum of each calibration standard into a
weighted sum of the loading spectra, and the weights given
to each loading spectrum, known as “scores,” are regressed

against the concentration data for the standards. When the
spectrum of an unknown is analyzed, PLS reconstructs the
spectrum from the loading spectra. The amounts of each load-
ing spectrum employed in reconstructing the spectrum, i.e.,
the “scores,” are then used to predict the concentration of the
unknown. PLS also generates a spectral residual, which cor-
responds to the difference between the actual and the recon-
structed spectrum. 

The scores and spectral residual provide useful informa-
tion for the detection of outliers, i.e., samples whose spectra
differ significantly from those of the training set. Outlier de-
tection is valuable in relation to assessing quantitative accu-
racy in the prediction of unknowns since, if an unknown is an
outlier, the PLS-predicted value for the parameter of interest
cannot be considered reliable. It also provides a means of
classifying an unknown as being part of the population mod-
eled by the training set, likely being part of this population or
not being part of this population on the basis of selected cri-
teria. These criteria may be based on the value of the parame-
ter being predicted, the magnitude of the spectral residual,
and the factor scores determined for the unknown. The under-
lying basis for each of these criteria is as follows: (i) Value
within range. If an unknown is part of the population repre-
sented by the training set, then the value of the predicted pa-
rameter should be within the range of values spanned by the
training set. (ii) Residual. When an unknown is predicted, a
residual spectrum is computed by subtracting the actual spec-
trum of the sample from the synthetic spectrum generated by
PLS. In order to obtain a numerical value for the magnitude
of the residual, the absorbance values at each data point of the
residual spectrum are squared and then summed, and then the
square root of the sum is taken. If an unknown is part of the
population represented by the training set, then the value of
the spectral residual should not exceed the average residual
encountered in the training set by a large factor. The lower
limit for the spectral residual is necessarily set to zero because
a zero residual would represent a perfect fit of the spectral
data for the unknown. (iii) Factor scores. When a sample is
analyzed using PLS, the output includes the contribution (fac-
tor score) of each loading spectrum or factor to the synthetic
spectrum generated by PLS. When the factor scores for an un-
known are within the range of the scores obtained for the
training set, it is a very strong indication that the sample truly
belongs to the population modeled by the training set. Thus,
the criterion based on factor scores is probably the most im-
portant classification tool of the three. 

The concepts, up to this point, consider only a single pop-
ulation, but can be expanded to consider several sample pop-
ulations simultaneously. In our work, four oil types (popula-
tions) were considered with the objective being to classify un-
knowns as belonging to one of these types as well as to
determine IV. In principle, provided the oil types are suffi-
ciently distinct from each other from a spectral standpoint,
this can be achieved by developing a PLS calibration for the
prediction of IV for each oil type and then classifying the un-
knowns on the basis of the output from PLS. This type of
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classification can be implemented through the AIRS software
package, which allows one to develop a method to carry out
the following sequence of events: (i) When a sample is ana-
lyzed by AIRS, the IV will be predicted from each of the PLS
calibration models developed for the different oil types and
the discrimination criteria selected for each model (based on
range, residual and factor scores) will be applied. (ii) Pro-
vided that the sample belongs to one of the oil types and that
there are sufficient differences between the oil types, the sam-
ple analyzed will pass the discrimination criteria for only one
of the models and will accordingly be classified as belonging
to the corresponding oil type. (iii) The IV prediction from the
selected calibration model will then be reported. 

The creation of a method of this type by the AIRS software
extends PLS beyond its basic predictive capabilities, provid-
ing a basis for classification of a sample within a defined class
or among defined classes of oil types. This ability can be par-
ticularly useful in quality control situations where one may
want not only to predict the value of a parameter but also to
confirm to which oil type the sample belongs. 

RESULTS AND DISCUSSION

The concepts and principles discussed above have been ap-
plied in the development of a FT-NIR method for discrimina-
tion among four defined oil types provided by a processor.
PLS calibrations for the prediction of IV from the FT-NIR
spectra in the region between 9100 and 7560 cm−1 were first
individually developed for each oil type using 20 oil samples
of that type as the training set. This spectral region was cho-
sen as it contains on-scale overtone bands containing infor-
mation related to the degree of unsaturation. Table 1 presents
the mean, SD, and range of the GC IV data of the standards
used for the development of the PLS calibrations, as well as
the cross-validation statistics obtained from those calibrations
in terms of mean difference (MDa) and standard deviation of
the differences (SDDa). The MDa and SDDa reflect, respec-
tively, the bias and random error of the PLS predictions. The
cross-validation statistics indicate that the IV theoretically
can be predicted within a standard deviation of 0.20 IV units
or less for oils A, C, and D, whereas for oil B, the SDDa is
~0.50. 

Figure 2 presents a composite plot of the individual cross-
validation predictions for each of the oil types, showing each
oil grouping in a tight cluster except for oil B, which appears
to be composed of two subgroups. This somewhat broader

spread for oil B may explain the substantially higher SDDa
obtained for this oil. In relation to the feasibility of discrimi-
nating among the four oil types on the basis of IV only, oils C
and D could potentially pose problems. Although fairly simi-
lar in their IV values, careful inspection of their respective
SD and ranges indicates that their IV values have no overlap.
On the other hand, on the basis of the PLS cross-validation
predictions, the situation is less clear-cut in terms of discrimi-
nating between oils C and D on the basis of predicted IV
alone because the SDDa values for both oils exceed the dif-
ference between their ranges. Therefore, a more elaborate dis-
crimination strategy was employed. 

Three discrimination criteria based on predicted IV, the
spectral residual, and the factor scores were used for classifi-
cation of samples among the four oil types. In the case of fac-
tor scores, the score ranges for only the first two factors in the
calibration model were found to be sufficient for discrimina-
tion among the four oil types. Figure 3 presents a schematic
representation of the three discrimination criteria set up in the
AIRS program to determine whether a validation sample be-
longs to oil type A. The diagram indicates how the program
renders its decisions as to whether a sample belongs, likely
belongs, or does not belong to the oil type A population using
the three criteria. As shown, each criterion is defined by two
sets of limits. The inner region (I) represents the region where
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TABLE 1
GC IV Data and PLS Cross-Validation Statistics for Oil Types A–Da

Oil Mean GC IV SD GC IV Range GC IV PLS MDa PLS SDDa R2 n

A 134.01 0.39 133.3–134.8 0.0005 0.2164 0.999 20
B 93.90 1.79 91.3–96.2 0.0001 0.4827 0.999 20
C 117.85 0.51 117.1–118.8 0.0020 0.1940 0.999 20
D 115.36 1.11 113.7–117.0 −0.0047 0.1468 0.999 20
aGC, gas chromatographic; IV, iodine value; PLS, partial least squares; SD, standard deviation; SDDa, standard deviation of
differences; MDa, mean difference.

FIG. 2. Composite plot of the cross-validation results for the four cali-
brations, showing the predicted iodine value (IV) for the individual
training sets vs. the gas chromatographic (GC) IV data. ▲▲, oil A; ▼, oil
B; ■■ , oil C; ●● , oil D.



a sample is considered to be part of the population, while
samples falling in regions II are likely part of the population,

and samples falling into regions III are definitely not part of
the population. As noted earlier, region I is rigorously defined
on the basis of PLS results obtained for the training set, and
the limits of this region should in theory be the basis for the
acceptance or rejection of a sample to or from a population.
The calculated rate of incorrect classification (i.e., a false pos-
itive) based on these rigorously defined discrimination crite-
ria is frequently less than 1 part in 1 million. It is much more
likely, however, that a sample belonging to a certain popula-
tion will not be classified as such (i.e., a false negative),
owing to minor deviations in the spectra, and thus a degree of
tolerance is built into the discrimination criteria based on the
variability of the spectra in the training set. Hence, the addi-
tional set of limits (regions II) is included for each discrimi-
nation criterion, which can be adjusted to attain a degree of
discrimination commensurate with the characteristics of the
samples one is working with. In our work, the limits defining
regions II were set as follows: range, limits of region I ± root
mean square error obtained from cross validation of the cali-
bration; residual, lower limit is zero by default; upper limit is
twice the upper limit of region I; and factor scores, limits of
region I ± half the range spanned by region I. 

Table 2 presents the classifications obtained for 20 valida-
tion samples, five from each oil type, using the three discrim-
ination criteria based on these limits as well as each discrimi-
nation criterion individually. For the majority of the samples,
the use of the inner region (I) yields the correct classification
with each of the individual discrimination criteria. The results
for oil A illustrate the need to build some tolerance into the
discrimination criteria. Because the value of the spectral
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FIG. 3. Schematic representation of the partial least squares (PLS)-based
discrimination criteria (predicted IV, spectral residual, and factor scores)
used to accept (region I), accept with qualification (regions II) and reject
(regions III) the oil samples as belonging to oil type A. See Figure 2 for
abbreviation.

TABLE 2
Classification of 20 Validation Samples Among Oil Types A–D 
Using PLS-Based Discrimination Criteria

Sample Actual Range, residual, Range Residual Factor scores
code (GC) IV and factor scoresa,b onlya onlya onlya,b

A1073 134.2 A* A A*, B* A
A1078 134.5 A A A, B* A
A1083 133.9 A* A A* A
A1088 134.2 A A A, B* A
A1093 133.9 A* A A* A
B1566 95.2 B B B B
B1571 94.3 B B B B
B1576 94.2 B B B B
B1581 94.6 B B B B
B1586 94.8 B* B B B*
C2216 118.7 C* C C, D*, B* C*
C2221 118.0 C C C, D*, B* C
C2226 118.5 C* C* C, D*, B* C
C2231 118.2 C C C*, D*, B* C
C2236 118.1 C C C, D*, B* C
D2556 115.3 D D D, C*, B* D, C*
D2561 115.2 D D D, C*, B* D
D2566 115.4 D D D, C*, B* D
D2571 115.1 D D D, C*, B* D
D2576 115.1 D D D, C*, B* D
aClassification of samples without an asterisk is based on region I; those with an asterisk are based
on regions II.
bFactor scores were those for the first two factors in the calibration model. See Table 1 for abbrevia-
tions.



residual from the PLS calibration for oil A is very small, three
of the five validation samples belonging to this oil type would
be rejected on the basis of the spectral residual discrimination
criterion with the use of region I only. However, when the
spectral residual discrimination criterion is extended to in-
clude regions II, the sample identification is inconclusive in
several cases, indicating the need to base the classification on
more than a single discrimination criterion. The results from
the classification when the three discrimination criteria were
combined in the AIRS program were 100% correct; the sam-
ples marked with an asterisk in Table 2 were flagged by the
AIRS program as possible outliers without any indication of
which criteria were marginal. 

For circumstances in which classification is not of interest
per se, we investigated the predictive performance of a calibra-
tion developed for the four oil types combined, rather than cal-
ibrating for each oil type individually. In addition, we evalu-
ated the relative predictive accuracy of a “global calibration”
developed and supplied by Bomem (13). Table 3 presents the
MD and SDD for uncertainty and reproducibility for the pooled
data for the validation samples. As can be seen, the individual
and combined calibrations perform comparably, while the
global calibration has a small bias (<1.0 IV unit) and a some-
what larger error associated with it. The global calibration,
which was developed using an extensive selection of oil types
(13), actually performs very well in tracking IV, but requires a
bias adjustment in order to match the agreement obtained with
the calibrations developed for the specific oil types. As seen
from the data in Table 3, it does not matter whether one cali-
brates on oil types individually or together, except that the ca-
pability for classification is clearly lost in the latter case. How-
ever, the combined calibration has the advantage that it can be
applied over a wider IV range with the possibility of interpola-
tion for blends of the different types of oils, which have IV val-
ues outside the ranges of the individual oil types.

Although additional information was not provided by the
processor about the samples supplied for evaluation in this
study, one can surmise, based on the IV data provided, that
oils C and D are two different blends of oils A and B. If this
were the case, quality control would be interested in knowing
which oil or blend is being processed and verifying that the
IV is within specifications. By using the individual calibra-
tions, one is capable of both classifying a sample as one of
the four oil types and obtaining an accurate value for its IV. If

a formulation error has been made (e.g., blending oils A and
B in the wrong ratio), the sample would be rejected as an out-
lier by all four individual calibrations, and no IV prediction
would be obtained. In this situation, having a combined cali-
bration would be useful. On the basis of the discrimination
criteria for the combined calibration, it would be possible to
ascertain whether the sample is in fact some blend of oils A
and B and, if it is, to obtain a prediction for its IV. Taking this
a step further, if the sample were completely unrelated to oils
A and B and their blends, the combined calibration would re-
ject the sample and, by resorting to the global calibration, the
IV value could be predicted, possibly providing a clue as to
what type of oil the sample may be. The scenario described
above illustrates how the AIRS program would allow one to
analyze and troubleshoot a sample by FT-NIR spectroscopy
and make practical use of a PLS-based classification method
in a quality control situation.

Analysis of unknowns. Although the results presented in
Table 3 were derived using proper validation techniques and
samples, an additional blind validation study was conducted
to provide an added degree of confidence in the method.
Table 4 presents the results obtained for classification of the
blind unknowns as well as their IV predictions from the indi-
vidual, combined, and global calibrations. This table also in-
cludes the information provided to us after completion of the
validation study by the processor supplying these samples.
Twenty of the 35 samples were identified by the processor as
belonging to oil types A–D, and all but one of these had been
correctly classified by the FT-NIR method. Approximately
half of these correct classifications were based on the less rig-
orously defined discrimination criteria (regions II), again il-
lustrating the need to build some tolerance into the discrimi-
nation criteria. It is particularly noteworthy that despite the
similarity of oil types C and D in terms of their IV, the
FT-NIR method was successful in distinguishing between
these two oil types. 

Five unknowns were incorrectly blended samples of oil
type B that had been deliberately included in the validation
set to test the capability of the FT-NIR method to detect for-
mulation errors. All five of these samples were rejected by the
calibration model for oil type B and only passed the discrimi-
nation criteria for the combined calibration model. The IV
predictions obtained for these samples from the combined
calibration model indicated that the IV of these samples were
about 5 IV units above the IV range for oil type B. This ex-
ample provides an excellent illustration of the point made pre-
viously regarding the utility of the combined calibration
model in cases of formulation errors. 

The 10 remaining unknowns were identified by the proces-
sor as being of types E and F, and thus did not belong to any
of the oil types on which the FT-NIR method was calibrated.
The five samples of type F were all correctly rejected by each
of the individual calibration models as well as the combined
calibration model. However, the FT-NIR method classified
four samples of type E as oil type C and the fifth one as oil
type D. In addition, the FT-NIR-predicted IV for the samples
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TABLE 3
MDa and SDDa of the IV Predictions for 20 Validation Samples 
from the Individual, Combined, and Global Calibrations 
Relative to the GC IV Reference Values

Individual Combined Global
Statistica calibrations calibration calibration

MDa 0.15 0.02 0.89
SDDa 0.32 0.33 0.49
MDr 0.01 0.03 −0.08
SDDr 0.15 0.15 0.34
aa = uncertainty, r = reproducibility. See Table 1 for other abbreviations.



of oil type E are 5 IV units lower than the GC-determined IV
reported by the processor, in contrast to the generally good
agreement overall between the FT-NIR and GC values shown
in Table 4 and examined in more detail below. To investigate
the reasons for this discrepancy, we determined the IV of these
samples, as well as those of nine samples of oil types A–D,
using a Fourier transform mid-IR (FTIR) method previously
developed in our laboratory (9). We also analyzed two sam-
ples of oil type E and one sample of oil type C by the AOCS
iodometric method (14). The results of these various analyses
corroborated the FT-NIR predictions, indicating that the GC
IV for the samples identified as belonging to oil type E are in-
correct. Accordingly, it may be concluded that the samples
provided to us may not have been the same as the ones ana-
lyzed by the processor, accounting for the seemingly incorrect
classification of these five samples by the FT-NIR method.

For the 20 samples belonging to oil types A–D, the pre-
dicted IV obtained from the individual calibration for the as-
signed oil type, the combined calibration, and the global cali-
bration were compared to the IV obtained by GC analysis.
The results showed that the individual, combined, and global
calibrations yielded MD of 0.32, 0.04, and 0.83 IV units, re-
spectively, and SDD of 0.56, 0.51, and 0.87, respectively, rel-
ative to the GC data. These results are similar to those shown
in Table 3 for the initial validation set and again illustrate that
slightly better matching of the GC data is achieved using the
oil-specific calibrations as opposed to the global calibration. 

In our previous work (11), we demonstrated the utility of
PLS as a quantitative analysis tool for the prediction of IV as
well as cis and trans content of fats and oils by FT-NIR spec-
troscopy. In the present work, we have demonstrated that PLS
calibrations also can be employed to classify samples among
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TABLE 4
PLS-based Classification and IV Predictions for a Blind Sample Set

PLS PLS IV PLS IV PLS IV Actual Actual
Code classificationa individual combination global classification IV

U2696b B 95.0 94.6 94.9 B 95.4
U2701b Bf 95.3 95.0 95.3 B 94.8
U2706b B 94.9 94.7 95.1 B 94.3
U2711b B 95.2 94.7 95.3 B 94.5
U2716b Ar 134.4 134.2 135.0 A 134.1
U2721b Br 95.7 94.62 95.5 B 94.37
U2726b A 134.3 134.2 135.1 A 133.9
U2731b Ar 134.5 134.3 134.9 A 133.7
U2736b Ar 134.4 134.2 135.4 A 133.8
U2741b A 134.0 134.0 134.8 A 134.0
U2746b —b — 101.4 102.5 Bc 102.4
U2751b — — 101.2 102.2 Bc 102.2
U2756b — — 101.3 102.3 Bc 102.5
U2761b — — 101.5 102.2 Bc 102.4
U2766b — — 101.5 102.4 Bc 102.4
U2771b CRr 117.2 117.2 116.9 C 117.4
U2776b Cr 117.3 117.2 117.3 C 117.5
U2781b — — 116.5 117.5 C 117.3
U2786b C 117.3 117.2 117.4 C 117.2
U2791b D 115.6 115.4 117.4 D 115.7
U2796b Cr 117.3 117.3 117.4 C 117.7
U2801b Drf 115.6 115.4 116.8 D 113.9
U2806b D 115.7 115.6 116.7 D 115.6
U2811b Drf 115.6 115.2 117.4 D 115.5
U2816b D 115.6 115.6 116.9 D 115.6
U2821b C 117.4 117.1 117.4 E 122.0
U2826b Drf 116.9 116.8 116.8 E 122.0
U2831b CRr 117.2 117.0 116.8 E 122.0
U2836b CRr 117.2 116.9 116.9 E 122.7
U2841b Cr 117.4 117.0 117.1 E 122.7
U2846b — — — 64.7 F 70.6
U2851b — — — 65.0 F 67.6
U2856b — — — 64.6 F 67.8
U2861b — — — 64.6 F 67.9
U2871b — — — 64.7 F 67.7
aClassification based on region I, except for those marked with a superscript, indicating that the dis-
crimination criteria defined in terms of range (R), spectral residual (r), or factor scores (f) were only
met when classification was based on regions II. See Table 1 for other abbreviations.
bSample rejected by the calibration model as not belonging to the population represented by the
training set.
cSample reported by the processor to have been incorrectly blended.



defined oil types. We also have shown that when IV calibra-
tions are specifically developed for defined oil types, the
agreement between the NIR predictions for unknowns and the
data obtained by the reference method is better than that ob-
tained from a global calibration based on a broad range of cal-
ibration standards. The global calibration was able to predict
all the samples provided for this study without flagging them
as outliers. For the analytical performance of the global cali-
bration to be comparable to that of the specific calibrations, a
validation process is required to determine the bias and cor-
rect it. This study has demonstrated that FT-NIR oil analysis,
when fully exploiting the combined predictive and discrimi-
nant capabilities of PLS, is a powerful and practical analyti-
cal quality control tool.
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